If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2-7=0
a = 81; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·81·(-7)
Δ = 2268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2268}=\sqrt{324*7}=\sqrt{324}*\sqrt{7}=18\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{7}}{2*81}=\frac{0-18\sqrt{7}}{162} =-\frac{18\sqrt{7}}{162} =-\frac{\sqrt{7}}{9} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{7}}{2*81}=\frac{0+18\sqrt{7}}{162} =\frac{18\sqrt{7}}{162} =\frac{\sqrt{7}}{9} $
| x-5+4x-10=5x-5 | | (5x-14)+(8x+12)=180 | | 6+(x+3)(x-3)=x^2-6x | | x2x-5/5x+2=3/22 | | 6x-6.10=7x-7.5 | | 132=-16t^2+96t+4 | | h-9/2=5 | | 3(5+a=21+5a | | .0.2x+4=1.2x+8 | | -2.4-x=4.9 | | -8-x=48 | | 8−6j=–8j | | 2x+3-x=4x+6 | | -5=1+0n-3n | | 0,04=1/8*4-0,5x | | 81=-63-12x | | -3b=6-10b | | -8-3b=6-10b | | -108=-8(4+8n)-1 | | 8=b-2.7 | | -x-3=30 | | –8−3b=6−10b | | -6(m+4)=48 | | 9-8h=-7h | | 4.9x^2-17x=0 | | 4y+1=51 | | x=33/3100/2+32-120/4 | | 11x+2=14x-13=180 | | 3(3x+2)–12=6x+9 | | 11x+2=14x-13 | | 8=-5x+2x | | 3x+8=9x4 |